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¢ Current approach for modeling BHCs In
Mesoscale models

¢ Observational 1soprene flux data
¢ Results and application of empirical model
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Biogenic Volatile Organic

Compounds

¢ Highly reactive in the atamosphere - oxidized
quickly by OH, O5 and NO,

¢ Over 90% of Global VOCs are emitted from
vegetation (Guenther et al. 1995)

¢ Contribute significantly to atmospheric chemistry
+ tropospheric O5 and aerosol formation
+ contributes to the atmospheric oxidative
capacity
¢ Dominant in rural areas (in particular isoprene)
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Typical Isoprene Fluxes
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What do we know about
ISsoprene emissions?

¢+ Isoprene fluxes vary with PAR and increase
exponentially with temperature

¢ |soprene basal emissions vary with position
In the canopy (sunlit vs. shaded |eaves)

¢ Short term (minutes to hours) vs. long term
(few days) control of emissions are different

¢ Isopreneis emitted from aspen, oak, poplar
at high rates (70to 100 ug g * hrt)
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How are biogenic
emissions determined?

’ SI mpl e Canopy mOdeIS ) ISOPRENE EMISSION, 96193, JUL11, 1996, 14 LST
(BEIS2, BEISS, -
GLOBEIS)

¢+ More complex canopy
models (CANVEG,
ACASA)

¢ Typically not coupled
with mesoscale
models...but should
they be?
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<‘> Canopy Models

Typical inputs include:
Above canopy solar radiation, temperature,
wind speed, and relative humidity
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Biogenic Emission
Inventory System (BEIS)

¢+ Simple scaling profilesfor T, PAR, RH and
wind through the canopy

+ Leaf energy budget solved for each layer (T,.4)

¢ Guenther isoprene emission algorithms for
light and temperature correction terms (C, C,),
and adjustment of basal emission rate (Cg)

F(T, PAR) = F, > C5.C,,Cy,
=
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Our shortcomings with
predicting Emissions

¢ Hourly and daily variability cannot be
explained with simple temperature and light
parameters

¢ Our understanding of the physiological
controlsisstill limited

¢ Uncertainty with the biogenic inventories
are typically within afactor of two
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Alternative parameter
for estimating emissions

¢ Surface Energy flux (in particular the
sensible heat flux)

+ Canopy scale surrogate for the canopy
Integrated |leaf level temperature and light

+ Available with land surface models and
regional models such as MM5

o Thecorrdation i1s aso useful asatool for
verifying canopy models
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Observational Data
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Isoprene Flux
Measurements

¢ Eddy Covariance Flux Measurements F = w’C’

¢

¢

¢

31 mlevel AmeriFlux tower

| soprene fluxes with Fast Isoprene Analyzer (FIS)
CO,/H,0 fluxes with open path infrared gas
analyzer (IRGA)

Sensible heat fluxes with sonic anemometer

30 min. average fluxes, continuous operation from
mid-May through October

peripheral information from AmeriFlux and Prophet
towers (PAR, T, net radiation, humidity, biomass
survey, LAI profile)
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Linear regression between isoprene flux
and sensible heat flux
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— o 12-Jul

July 12, 2000
| y=0.04x + 0.55
R2 = 0.92

SR July 15, 2000
%7 July 9,2000 y=0.02x+0.51
y =0.03x + 0.55 R2 =0.97
R2 =0.98

250
Sensible Heat Flux (W m-2)
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Slope and correlation coefficients for
the daily linear regression between

iIsoprene flux and sensible heat flux
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Multiple regression
analysis
¢ Observed isoprene fluxes vs. other parameters

¢ A ssimple regression was favored using heat
flux and maximum daily heat flux

[isop. flux] =0.67 +.02H —4.1 x 10°> Max H
where H = sensible heat flux
Max H = maximum daily heat flux
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Predicted 1soprene flux vs. observed isoprene
flux for the 2000 northern MI data

y = 0.70x + 0.96
R2 = 0.70

12 15 18 21
Observed Isoprene Fluxes (mgC m-2 h-1)
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Daily predicted and observed
Isoprene fluxes for the 2000
northern Ml data

—— Observed isoprene Flux
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Daily predicted and observed

Isoprene fluxes for the 1998
northern Ml data
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Comparison with BEIS

¢ The multiple regression results estimate
ISoprene emissions with good temporal
correlation, however, long term (day-to-day)
changes in emissions are not captured

¢ Predictions are on par with BEIS, however,
IS BEIS predicting Isoprene emissions
correctly for the right reasons?
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Daily observed isoprene fluxes compared
to predicted fluxes based on the multiple

regression equation and BEIS
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BEIS predicted sensible heat flux vs.
observed heat flux for 2000

y = 2.06x - 30.0
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Conclusions

¢ These correlations and predicted isoprene
fluxes still do not explain the physiological
control mechanism for Isoprene emissions

¢ Theregression eguation presented provides
a diagnostic tool for testing canopy models
¢ Could be auseful surrogate for modeling

ISoprene emissions in current mesoscale
meteorological models
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